PHASE I OF IPH4102, ANTI-KIR3DL2 MAB, IN RELAPSED/REFRACTORY CUTANEOUS T-CELL LYMPHOMAS (CTCL): DOSE-ESCALATION SAFETY, BIOMARKER AND CLINICAL ACTIVITY RESULTS

M. BAGOT¹, P. PORCU³, C. RAM-WOLFF¹, M. KHODADOUST², B. WILLIAM³, M. BATTISTELLA¹, A. MARIE-CARDINE¹, S. MATHIEU¹, M. VERMEER⁴, S. WHITTAker⁵, M. DUVIC⁶, A. BENSUSSAN¹, C. PATUREL⁸, C. BONNAFOUS⁸, N. THONNART⁷, A. WIDEMANN⁸, C. BONIN⁸, H. SICARD⁸, C. PAIVA⁸, K. PILZ⁸ AND Y. H. KIM²

¹HÔPITAL SAINT LOUIS, PARIS, FRANCE
²STANFORD CANCER INSTITUTE - PALO ALTO, CA, USA
³OHIO STATE UNIVERSITY – COLUMBUS, OH, USA
⁴LUMC - LEIDEN, THE NETHERLANDS
⁵GUY’S AND ST THOMAS’ HOSPITAL – LONDON, UK
⁶MD ANDERSON CANCER CENTER – HOUSTON, TX, USA
⁷INSERM U976, HÔPITAL ST LOUIS, PARIS, FRANCE
⁸INNATE PHARMA, MARSEILLE, FRANCE
KIR3DL2 IS A THERAPEUTIC TARGET IN CTCL

• KIR3DL2 belongs to the Killer Ig-like Receptor family of receptors that modulate NK and T cell activity

• KIR3DL2 is expressed on ~30% of normal NK and <10% normal T cells

• KIR3DL2 is expressed on CTCL cells (skin lesions and blood aberrant cells)
 > Irrespective of disease clinical stage
 > With a higher prevalence in Sézary syndrome (SS), CD30⁺ LPD and Mycosis fungoides with large-cell transformation
 > KIR3DL2 may have prognostic significance in SS

IPH4102, FIRST-IN-CLASS ANTI-KIR3DL2 MAB ATTRIBUTES

- IPH4102 is a humanized antibody that targets and selectively depletes KIR3DL2-positive cells
- Its modes-of-action include ADCC and ADCP (Ab-dependent cell cytotoxicity and phagocytosis)
- IPH4102 has shown potent pre-clinical efficacy:
 > In mouse models of KIR3DL2-positive tumor cells
 > In *ex vivo* autologous assays using patient-derived NK and Sézary cells

Mice engrafted iv with KIR3DL2⁺ tumors

% of 7AAD⁺ (ie dead) Sézary cells

Marie-Cardine *et al*, 2014, Cancer Res. 74(21)
• Dose-escalation (10 dose levels – accelerated 3+3 design) followed by cohort expansion
• **Primary objective:** determination of MTD and RP2D, overall safety
• **Secondary objectives:** clinical activity, PK/immunogenicity
• **Exploratory objectives:** changes in KIR3DL2+ cells in involved compartments, Molecular Residual Disease (MRD), NK cell function pre-dose
• **Key inclusion criteria:**
 - Any CTCL subtype, ≥ 2 prior lines of systemic therapy, if MF/SS stage ≥ IB
 - > 5% aberrant lymphocytes express KIR3DL2 in ≥ 1 skin lesion or in blood
• Treatment until progression or unacceptable toxicity
• Intra-patient dose-escalation allowed after W5
BASELINE DISEASE CHARACTERISTICS (AS OFF MAY 10, 2017)

<table>
<thead>
<tr>
<th>Age (years), median (min; max)</th>
<th>All doses N = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (min; max)</td>
<td>71 (42; 90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MF/SS CTCL type, n (%)</th>
<th>Mycosis fungoides (MF)</th>
<th>Sézary Syndrome (SS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (16)</td>
<td>20 (80)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non MF/SS CTCL type, n (%)</th>
<th>CD4⁺ T-cell lymphoma, NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical stage (MF/SS), n (%)</th>
<th>IB</th>
<th>IIB</th>
<th>IVA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (4.1)</td>
<td>3 (12.5)</td>
<td>20 (80)</td>
<td></td>
</tr>
</tbody>
</table>

| No. of regimen (systemic) received, median (min; max) | 4 (2; 10) |

- 25 patients treated: 25 evaluable for safety, 24 for clinical activity (1st clinical assessment of the last patient enrolled at 10 mg/kg occurred after data cut-off)
- Seven of screen failures (out of 9/34 pts screened) were due to lack of KIR3DL2 expression
- No dose-cohort had to be expanded for safety reasons
ADVERSE EVENTS POSSIBLY RELATED TO STUDY DRUG (> 5%; > 1 PATIENT)

- No DLT, MTD not reached

<table>
<thead>
<tr>
<th>Any related AE</th>
<th>Related AE (N = 25)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All grades n (%)</td>
<td>Grade 3 n (%)</td>
</tr>
<tr>
<td>Any related AE</td>
<td>13 (52)</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>4 (16)</td>
<td>2 (8)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>3 (12)</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>2 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Hot flush</td>
<td>2 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Chills</td>
<td>2 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>2 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Muscle spasm</td>
<td>2 (8)</td>
<td>0</td>
</tr>
</tbody>
</table>

- No grade 4 or 5 related AEs
- Only 1 related SAE: grade 2 atrial flutter on the day of IPH4102 administration that did not reoccur at subsequent administrations
- One patient developed ADA -> recurrent IRR despite premedication
- N = 10 pts experienced infections, including n = 2 sepsis (including 1 death – S. aureus) but all deemed related to underlying disease and not to study drug
PRELIMINARY CLINICAL RESPONSE RESULTS
(CUT-OFF DATE MAY 10, 2017)

<table>
<thead>
<tr>
<th>Best Response (n)</th>
<th>Best Response in all patients</th>
<th>Best Response in Sézary Syndrome patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global N=24</td>
<td>Global n=19</td>
</tr>
<tr>
<td>CR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PR</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>SD</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>PD</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ORR</td>
<td>41.7 %</td>
<td>47.4 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOR (days) - median</th>
<th>Not reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>(min – max)</td>
<td>(64+ – 379+)</td>
</tr>
<tr>
<td>251</td>
<td>Not reached</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PFS (days) - median</th>
<th>329</th>
</tr>
</thead>
<tbody>
<tr>
<td>(min – max)</td>
<td>(28+ – 526+)</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
</tbody>
</table>

ORR: Overall Response Rate
PFS: Progression-Free Survival
DOR: Duration of Response

- Median follow-up time is 338 days
- Preliminary results are calculated for 24 patients (19 SS) evaluable for efficacy assessment, treated with doses ranging from 0.0001 to 10 mg/kg
- All clinical responses are confirmed
- 2 patients who were in global PR reached “near CR” skin response, ie >90% reduction in mSWAT
- Pruritus is notably decreased in patients with clinical response
TIME-COURSE OF GLOBAL RESPONSE FOR 24 EVALUABLE PATIENTS

Response evaluation according to International Consensus criteria (Olsen et al, JCO 2011)
Patient 11-005:
- 77-year old female
- **Sézary Syndrome** diagnosed in NOV 2008
- **6 lines of previous therapies** (incl. ECP + BEX + INFα, MTX, mogamulizumab, BEX, pembrolizumab)
 - Started at 0.05 mg/kg on 25JAN16
 - Global PR since W10 (0.05 mg/kg)

Patient 11-024:
- 75-year old male
- **Sézary Syndrome** diagnosed in AUG 2011
- **6 lines of previous therapies** (incl. MTX, INFα, vorinostat then mogamulizumab, BEX, pembrolizumab)
 - Started at 3 mg/kg on 16OCT16
 - Global PR since W14 (3 mg/kg)
EXPLORATORY/PHARMACODYNAMICS ENDPOINTS

SKIN & BLOOD ASSESSMENTS / PT 11-005

<table>
<thead>
<tr>
<th>SCRx</th>
<th>CD4/8 ratio in skin</th>
<th>mSWAT</th>
<th>% of KIR3DL2+ cells in skin lesions by IHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR</td>
<td>52%</td>
<td>SCR: 49</td>
<td>SCR: 80.5/1/0</td>
</tr>
<tr>
<td>W5</td>
<td>4.4%</td>
<td>W5: 87/0/0</td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>36.5/0/0</td>
<td>PR</td>
<td></td>
</tr>
<tr>
<td>W14</td>
<td>0.2%</td>
<td>W14: 19.3/0/0</td>
<td></td>
</tr>
</tbody>
</table>

CD4/8 ratio in skin

- SCR: 52%
- W5: 4.4%
- W10: 36.5/0/0
- W14: 0.2%

mSWAT

- SCR: 49
- SCR: 80.5/1/0

% of KIR3DL2+ cells in skin lesions by IHC

- SCR: 52%
- W5: 4.4%
- W10: 36.5/0/0
- W14: 0.2%

MRD in skin

- TCRVb07-03
- TCRVb20-01

MRD in blood

- TCRVb07-03
- TCRVb20-01

Graphs:

- KIR3DL2+ CD4+ T cell death
- CD4/8 ratio in skin
- MRD in skin
- MRD in blood

Notes:

- SCR = screening
- CR in blood since W10
- Vbeta-pos CD4 T (central)
- KIR3DL2-pos CD4 T (central)
- CD26-neg CD4 T (local)
IPH4102-101 HIGHLIGHTS
SAFETY, CLINICAL ACTIVITY AND BIOMARKERS

• IPH4102 MTD was not reached: well tolerated in an elderly and heavily pretreated (med. 4 prior lines) patient population
 > AE are typical for CTCL or reflects low grade infusion-related reactions
 > Only one related AE of grade 3 or higher occurred (at 0.2 mg/kg)
• Preliminary best global ORR is 41.7% in the evaluable population and 47.4% in SS patients
 > One global complete response was observed
 > 2 complete responses in skin and 5 complete responses in blood
 > Pruritus is substantially improved
• PK is typical for an IgG1 antibody; only 1 patient developed ADA
• Pharmacodynamic endpoints (monitoring of KIR3DL2-positive cells and MRD) are consistent with clinical activity results, confirming drastic elimination of neoplastic cells in skin and in blood, and potential restoration of skin normal immune system
• Patient NK cells pre-dose present robust ADCC activity ex vivo
• Expansion cohorts are planned to start in Q3 2017 at the RP2D, with 30 additional patients, including 15 more SS to confirm preliminary results
ACKNOWLEDGEMENTS

Dpts of Dermatology & Pathology
St Louis Hospital (Paris, France)
Martine Bagot
Caroline Ram-Wolff
Steve Mathieu
Maxime Battistella

INSERM Unit 976 (Paris, France)
Anne Marie-Cardine
Nicolas Thonnart
Armand Bensussan

Histalim (Montpellier, France)
Laurence Maunier

Leiden University Medical Center
(Leiden, Netherlands)
Maarten Vermeer

Guy’s and St Thomas’ Hospital
(London, UK)
Sean Whittaker

Stanford Cancer Institute (CA, USA)
Youn Kim
Michael Khodadoust

Ohio State University (OH, USA)
Basem William
Pierluigi Porcu

MD Anderson Cancer Center (TX, USA)
Madeleine Duvic

Innate Pharma (Marseille, France)
Korinna Pilz
Carine Paturel
Agnès Widemann
Frédérique Moriette
Lydie Lagache
Robert Zerbib
Hatem Azim
Christine Paiva
Cécile Bonnafous
Arnaud Dujardin
Ariane Morel
Christian Belmant
Anne T. Martin
Hélène Sicard

All our patients and their families…