First-in-human, open label, multicenter Phase I of IPH4102, first-in-class humanized anti-KIR3DL2 mAb, in relapsed/refractory cutaneous T-cell lymphomas

M. Bagot1, M. Duvic3, M. Vermeer4, P. Porcu5, S. Whittaker6, C. Ram-Wolff1, C. Paiva7, A. Marie-Cardine1, C. Bonnafous7, C. Paturel7, R. Zerib7, A. Bensussan1, H. Sicard7, K. Piiz7 and Y. Kim2

1Hôpital Saint Louis – 75475 Paris cedex 10, France. 2Stanford University Medical Center, CA, USA. 3MD Anderson Cancer Center – Houston, TX, USA. 4LUMC – Leiden, the Netherlands. 5OSU – Columbus, OH, USA. 6Guy’s and St Thomas’ Hospital – London, UK. 7INNATE PHARMA, 13009 Marseilles, France.

Background

Cutaneous T-cell lymphomas (CTCL) comprise a heterogeneous group of T-cell derived malignancies that arise primarily in skin. There is no standard of care in CTCL, and current treatment options have limited efficacy in advanced disease.

KIR3DL2 is consistently expressed in all subtypes of CTCL, irrespectively of disease clinical stage, with the greatest expression in Sézary Syndrome (SS) and transformed Mycosis Fungoides (MF), two subsets with high unmet need. KIR3DL2 belongs to the killer immunoglobulin (Ig)-like receptor (KIRs) family and is also expressed on minor populations of normal NK, CD8 and CD4 T cells.

IPH4102 is a first-in-class anti-KIR3DL2 monoclonal antibody (mAb). It depletes KIR3DL2-expressing tumor cells. Its modes of action include Antibody-Dependent Cell-Cytotoxicity (ADCC) and –Phagocytosis (ADCP). IPH4102 has potent efficacy in non-clinical models, in particular ex vivo autologous assays using primary CTCL cells (Marie-Cardine et al, Cancer Res. 2014).

IPH4102-101 (NCT02593045) is a first-in-Human Phase I study of single-agent IPH4102 in relapsed / refractory CTCL.

Study Objectives

Primary Objective

- To assess the safety and tolerability of increasing IV doses of single agent IPH4102 by characterizing the dose limiting toxicities (DLT) and (S)AEs
- To identify the MTD or determine a dose for further studies (RP2D)

Secondary Objectives

- To explore antitumor activity
- To assess pharmacokinetics (PK)
- To assess immunogenicity
- To explore pruritus

Exploratory Objectives

- To assess plasma cytokine released post administration
- To explore KIR3DL2-expressing cell changes in the peripheral blood (flow cytometry), skin lesions (IHC) and lymph nodes (IHC)
- To monitor other changes (phenotype & number) of circulating immune cells (flow cytometry)
- To explore NK cell and macrophage infiltration in skin lesions
- To assess expression of other immune receptors in skin lesions
- To assess Minimal Residual Disease (MRD)
- To explore blood NK cell function ex vivo pre-dose

Study Design

The study has two sequential portions, a dose-escalation followed by cohort expansion. IPH4102 first Human dose was selected based on a MABEL strategy (from an in vitro assay of cytokotix activity) and subsequent dose-levels were chosen through PK/PD modeling using animal exposure and efficacy data.

In the dose-escalation portion, a 3+3 design with accelerated titration is employed.

The dose that will be used in the cohorts (RP2D) will be selected based on the results from the dose-escalation portion. Cohort design (numbers, CTCL subtypes...) may be revisited according to dose-escalation findings.

Enrolment status

Enrolment into study IPH4102-101 started in November 2015 and is currently ongoing.

Bibliography


[Image 1240x53 to 1564x756]